Stability of Multi-Layer Cellular Neural/Nonlinear Networks
نویسندگان
چکیده
We have found a formalism that lets us present generalizations of several stability theorems (see Chua & Roska, 1990; Chua & Wu, 1992; Gilli, 1993; Forti, 2002] on Multi-Layer Cellular Neural/Nonlinear Networks (MLCNN) formerly claimed for Single-Layer Cellular Neural/Nonlinear Networks (CNN). The theorems were selected with special regard to usefulness in engineering applications. Hence, in contrast to many works considering stability on recurrent neural networks, the criteria of the new theorems have clear indications that are easy to verify directly on the template values. Proofs of six new theorems on 2-Layer CNNs (2LCNN) related to symmetric, τ -symmetric, nonsymmetric, τ -nonsymmetric, and sign-symmetric cases are given. Furthermore, a theorem with a proof on a MLCNN with arbitrary template size and arbitrary layer number in relation to the sign-symmetric theorem is given, along with a conjecture for the one-dimensional, two-layer, nonreciprocal case.
منابع مشابه
Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملSolution of Laminar Boundary Layer and Turbulent Free Jet With Neural Networks
A novel neuro-based method is introduced to solve the laminar boundary layer and the turbulent free jet equations. The proposed method is based on cellular neural networks, CNNs, which are recently applied widely to solve partial differential equations. The effectiveness of the method is illustrated through some examples.
متن کاملThe Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...
متن کاملStable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global ...
متن کاملRejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 14 شماره
صفحات -
تاریخ انتشار 2004